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Abstract
We consider a simple cubic magnetic cluster with spin-1/2 ions at its eight
corners. The superexchange Hamiltonian employed in this paper involves
nearest, next-nearest (nn), and next to next-nearest (nnn) neighbour interactions.
These competing exchange interactions are found to generate a number of
phases with ground states: (a) ferromagnetic; (b) nn-neighbour dimers;
(c) regular antiferromagnetic; (d) nnn-neighbour dimers; and (e) nnn-neighbour
forming triplets. We have also found fully polarized and partially polarized
lowest spin excitations in the broken symmetry phases. The effects of the low-
energy characteristics in various phases have been quantified by computing
thermodynamic properties, such as magnetization and susceptibility.

1. Introduction

In recent years, the discovery that magnetic clusters such as Mn12 and Fe8 show resonant
magnetization tunnelling and quantum interference has paved the way for extensive research
in magnetic clusters [1]. In an applied magnetic field the magnetization curves form hysteresis
loops with unique ‘staircase’-like structures at the transition points [2,3]. These clusters show
finite magnetization at zero temperature in the ground state, which is essential to account for
such quantum tunnelling. The tunnelling rate obtained experimentally depends on the applied
magnetic field and the temperature. The clusters which are used for experimental studies have
varying sizes. They could be dimers (two magnetic ions) or very large magnetic blocks, with
negligible inter-cluster interactions [4]. Thus the net magnetization depends on the magnitude
of the spin at each site, and the possible interaction pathways between the neighbouring spins.
The purely isotropic antiferromagnetic Heisenberg one-dimensional spin system has a singlet
ground state. However, depending on the coordination number of each spin, and the nature of
the exchange interactions, a variety of quantum phases, such as ferromagnetic and frustrated
nonmagnetic, can be generated.
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These phases have been investigated extensively in the last three decades, since the Haldane
conjecture, which differentiates between integer and half-odd-integer (hoi) spin chains [5].
While the hoi spin chains show quasi-long-range order (QLRO) and gapless excitations, the
integer spin chains have short-range spin–liquid ground states with gapped excitations. On
the other hand, competing exchange interactions in hoi spin chains introduce frustrations [6].
With the inclusion of the next-nearest (nn) neighbour antiferromagnetic exchange interactions
(J2), the system remains gapless (with ground-state QLRO) until a critical J2c = 0.2411, but
above this J2, the system becomes continuously dimerized [7, 8]. These results have been
experimentally verified [9], and are for the chains with antiferromagntic exchanges. When
the nearest-neighbour (J1) and J2 exchanges have opposite signs, the ground state can be
either antiferromagnetic (singlet state) or ferromagnetic (fully polarized), depending on the
magnitude of α = J2/J1 [10].

Due to the fact that inter-cluster hopping is negligible in magnetic clusters, the
magnetization of the entire system is dependent only on the individual cluster magnetizations
which in turn depend on the exchange interactions among the neighbouring spins. Thus it
would be interesting to study the effects of competing interactions on molecular clusters.
Although there have been a large number of studies on frustrated extended systems, frustrated
clusters are relatively new and, to our knowledge, have not been explored seriously [11,12]. In
this paper, we consider a simple cubic spin-1/2 cluster. In general, the exchange pathways are
complex, and so the nature (sign and magnitude) of the exchange parameters are difficult to
predict a priori. Clusters with high symmetry and small size are relatively easy to study, and
hence a detailed insight into the energy spectrum can be obtained with a variety of exchange
parameters, both in terms of sign and magnitude.

In the next section, we introduce the model Hamiltonian for a cubic spin-1/2 magnetic
cluster which is used in our study. In section 3, we present the results of our computations
of the ground state and low-lying excitations of the cubic system. We also calculate
the thermodynamic properties such as magnetization and susceptibility at certain exchange
parameter values where the system shows interesting low-energy characteristics. We conclude
the paper with a summary of all our results.

2. Model Hamiltonian

We consider a simple cubic cluster with spin-1/2 ions at its eight corners. A sketch of this
cluster is shown in figure 1. The Hamiltonian for this system can be explicitly written as

H = J1H1 + J2H2 + J3H3 (1)

where
H1 = �S1 · �S2 + �S1 · �S4 + �S1 · �S6 + �S2 · �S3 + �S2 · �S5 + �S3 · �S4

+ �S3 · �S8 + �S4 · �S7 + �S5 · �S6 + �S7 · �S8 + �S5 · �S8 + �S6 · �S7

H2 = �S1 · �S3 + �S1 · �S5 + �S1 · �S7 + �S2 · �S4 + �S2 · �S6 + �S2 · �S8

+ �S3 · �S5 + �S3 · �S7 + �S4 · �S6 + �S4 · �S8 + �S5 · �S7 + �S6 · �S8

H3 = �S1 · �S8 + �S2 · �S7 + �S3 · �S6 + �S4 · �S5.

(2)

In the above expression, J1, J2 and J3 are the nearest, next-nearest (nn) and next to next-
nearest (nnn) neighbour interactions, respectively. �Si is the spin vector located at site i. We
have considered the case where Si = 1/2. The total Hamiltonian (H ) commutes with the total
spin operator, S2 = (

∑8
i=1

�Si)
2, and the z-component of the total spin, Sz

tot. However, as the
size of the system is small (eight sites), we have used only Sz

tot as a good quantum number. For
the cubic cluster, out of the total 256 basis states, 70 and 56 states are found to be in Sz

tot = 0
and 1 subspaces, respectively.
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1 Figure 1. Schematic diagram of a cubic cluster.

To solve this Hamiltonian, we have used the exact diagonalization scheme. Since we are
dealing with a relatively small number of basis states in each Sz

tot subspace, we can obtain all
the eigenvalues and eigenfunctions (which are a linear combination of the basis states). The
standard Davidson algorithm has been used to diagonalize the full Hamiltonian. To correctly
assign the total spin quantum numbers to each of the Sz

tot states, we compute the eigenvectors
of all the states in Sz

tot = 0 subspace, and operate by the S2 operator. To determine the phase
of the ground state, we have computed equal time two-spin correlation functions. Due to the
high symmetry of the cubic cluster, there are only three unique two-spin correlation functions,
namely, 〈�S1 · �S2〉, 〈�S1 · �S3〉 and 〈�S1 · �S8〉.

3. Results and discussion

3.1. Ground state and low-lying excitations

We have computed the properties of the cubic cluster in the ground and excited states for a
range of exchange parameter values. All three exchanges (J1, J2, J3) can in principle be varied.
However, we set one of these parameters, J1, to be either +1 or −1, so that we can now vary
only two parameters, namely, the ratios α = J2/J1 and γ = J3/J1. In most of the limiting
cases, exact results can be obtained. For example, γ = 0 and α positive (negative) ∞, with J1

positive, results in a decoupled system with antiferromagnetic (ferromagnetic) couplings only
between the nn neighbours. The interest, however, is in the realistic parameter regime where
these phases or other new phases appear1.

Let us first analyse the system with varying α, setting γ = 0. There are four cases, which
we consider separately: (i) J1 positive and α positive; (ii) J1 positive, α negative; (iii) J1

negative, α positive; and (iv) J1 negative, α negative. For all the above mentioned cases
|J1| = 1.

Before we proceed with the above cases, let us consider the Hamiltonian when γ = 0.
With this condition, the total Hamiltonian can be written as

H = ±(�S1357 · �S2468 − H3 + α/2(S2
1357 + S2

2468) − 3α) (3)

where �Sijkl = (�Si + �Sj + �Sk + �Sl), and S2
ijkl = Sijkl(Sijkl + 1). The first term in the above

equation consists of nearest-neighbour and nnn-neighbour interaction terms. The H3 term is
to eliminate the extra nnn-neighbour interaction terms. The third term takes into account the

1 The word ‘phase’ is used only for convenience, to distinguish regions with different two spin–spin correlation
functions. Our model has no true phase transitions in its proper sense.
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Figure 2. Nearest-neighbour 〈S1S2〉, nn-neighbour 〈S1S3〉, and nnn-neighbour 〈S1S8〉 correlation
functions as a function of α.

nn-neighbour interactions, with an additional 1
2

∑
i S

2
i , which is 3 for an eight site spin-1/2

cube. The ± sign is to take into account the sign of J1.
We consider case (i) with both J1 and α antiferromagnetic (positive). Then, for α = 1,

the above Hamiltonian (equation (3)) simplifies to H = −(H3 + 3). We have considered a
singlet ground state as is the case for an antiferromagnet. Thus, in this case, the Hamiltonian
of the system depends only on the nnn-neighbour interactions (H3). For a minimum energy
configuration, H3 should be a positive maximum. H3 contains four interaction terms, and so
the maximum positive value would be 1, if each term contributes its largest possible value, 1/4.
This condition emphasizes that each of the nnn neighbours—(1, 8), (2, 7), (3, 6), (4, 5)—form
triplets for α = 1 with positive J1, while the entire system remains in the singlet ground state.
We plot the spin–spin correlations for case (i), as a function of α in figure 2. As can be seen
from the figure, 〈�S1 · �S2〉 correlations are always antiferromagnetic, but the correlation strength
decreases with the increase in α. 〈�S1 · �S3〉 is ferromagnetic at α = 0 and continues to remain
so until α = 2/3, where it becomes antiferromagnetic. 〈�S1 · �S8〉 correlation is −0.21 at α = 0,
but changes sign at α = 1/2. At α = 1, 〈�S1 · �S8〉 shows exact triplet correlations, 1/4, as
predicted above. The spin gap is found to increase with the increase in α.

Case (ii) does not lend itself to an extended study because the ferromagnetic interactions
between the nn neighbours increases the probability of antiparallel spin orientations of the
nearest-neighbour spins.

The most interesting case occurs when J1 is negative (cases (iii) and (iv)). In this case,
for positive α, the system remains in a ferromagnetic ground state. The Hamiltonian for the
α = 1 point can be analysed with the help of only four two-point correlations, since at this
point the Hamiltonian turns out to be H = −7 + H3 (ground-state energy is −6). However,
as α becomes negative, the system enters into an antiferromagnet ground state. This phase
transition occurs precisely (up to fourth decimal place) at α = −1/3.

The above transition is shown in figure 3. The spin–spin correlations, 〈�S1 · �S2〉, 〈�S1 · �S3〉
and 〈�S1 · �S8〉, as a function of α, indicate that all three correlations are 1/4 when α � −1/3.
In the antiferromagnetic phase, the spin–spin correlations show interesting behaviour as a
function of |α|. We find that 〈�S1 · �S2〉 decays slowly to zero, while the other two correlations
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Figure 3. α-dependence of the correlation functions, with J1 < 0.

become negative immediately as |α| increases from 1/3. 〈�S1 · �S8〉 eventually tends to zero, as
we increase |α|. 〈�S1 · �S3〉 approaches a finite limiting value, −1/4, as |α| tends to ∞. This
limiting nn-neighbour correlation corresponds to an equal contribution from each interaction
in a triangular structure formed by J2 interactions. The ground state of a triangle is degenerate
with a pseudo-spin symmetry corresponding to the clockwise and anticlockwise directions.
This phase corresponds to a broken symmetry dimerized phase, wherein the nn neighbours
form singlet dimers.

So far we have considered the cases with J3 = 0. The situation becomes very interesting
as we turn on γ . With nonzero γ (and J1 < 0), the Hamiltonian (see equations (1) and (3))
immediately becomes

H = −�S1357 · �S2468 + (1 − γ )H3 − α/2(S2
1357 + S2

2468) + 3α. (4)

In terms of the total spin operator, the above Hamiltonian simplifies to

H = −1/2S2 − (α − 1)/2(S2
1357 + S2

2468) + (1 − γ )H3 + 3α. (5)

Let us analyse the situation with α = 1 (which has a ferromagnetic ground state at γ = 0).
In this limit, with nonzero γ , the Hamiltonian reduces to

H = −1/2S2 + (1 − γ )H3 + 3. (6)

In the ferromagnetic ground state, the total energy is −7 + (1 − γ ), as 〈H3〉 = 1 in a
ferromagnet. We can expect a phase transition from this fully polarized state to a nonmagnetic
state. To obtain the transition point, we equate the Hamiltonian for two different phases:
the ferromagnetic phase with H = −6 − γ , and the antiferromagnetic phase for which
H = (1 − γ )H3 + 3. Along the α = 1 line, the Hamiltonian depends only on H3. The lowest-
energy antiferromagnetic configuration occurs when H3 = −3. Equating these two equations,
we obtain the transition point to be at γ = −1.5. Below this transition point, γ < −1.5, α = 1,
the ground state corresponds to a dimerized phase where nnn neigbours form singlet dimers.
The lowest excitation from this antiferromagnetic phase is not to a triplet state, but rather to
a fully polarized ferromagnetic state. However, the triplet excitation (one of nnn-neighbour
singlet forming triplet) stabilizes after a certain γ . This γ is obtained by equating the triplet
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Figure 4. J1 < 0 phase diagram in α–γ plane. The dot-dashed curve divides the ferromagnetic
and nonmagnetic ground-state phases. The other two lines represent phases with exact broken
symmetry singlet ground state, with the lowest spin excitation: ferromagnetic (solid line), quintet
(long dashed) and triplet (dot).

excitation with the ferromagnetic state, i.e. −1 + (1 − γ )(−2) + 3 = −7 + (1 − γ ), which
readily gives γ = −2. In the phase diagram (figure 4), we have marked this with the dotted
line. Note that the ground state is same all along the line α = 1 (γ < −1.5), however the
low-lying excitations above and below γ = −2 are completely different. This difference is
reflected in the low-temperature behaviour, outlined in the next section.

Another exact point with a broken symmetry phase can be obtained by setting γ = 1.
This condition reduces the Hamiltonian to

H = −1/2S2 − (α − 1)/2[S2
1357 + S2

2468] + 3α. (7)

In this case the Hamiltonian depends only on the nn-neighbour interactions and not on H3.
Along the γ = 1 line, the total energy for a ferromagnetic ground state is −10− (α−1)6+3α.
On the other hand, the lowest energy for an antiferromagnetic state is when nn neighbours form
singlet dimers, such that S2

1357 = S2
2468 = 0. Equating the energy expressions for these two

states, −4 − 3α = 3α, we obtain the transition to be at α = −2/3. In the antiferromagnetic
phase, the ground state is exact with nn neighbours forming singlets. Each of the four-spin
terms in the square brackets in equation (7) form a tetrahedral configuration, which can
accommodate only two singlets. The lowest energy for the S = 1 configuration (with one
of the singlets forming a triplet) is −1 − (α − 1) + 3α. Quartet (S = 2) formation from
two triplets in any one of the two tetrahedra (with singlets in other tetrahedra) costs the same
energy, −3 − 2(α − 1) + 3α, as that of one triplet from each tetrahedra. Equating the energy
expressions for the ferromagnetic, S = 1 and 2 states, we obtain lowest-energy excitations:
(i) ferromagnetic for −3/4 < α < −2/3, (ii) S = 2 when −1 < α � −3/4, and (iii) S = 1
for α � −1. Thus, in the γ = 1 line, although the ground state is antiferromagnetic, there
are three different lowest spin excitations: (i) ferromagnetic; (ii) S = 1; and (iii) S = 2. In
figure 4, we have shown these excitation characteristics in the γ = 1 line.

These transitions are exact only along the lines, α = 1 and γ = 1, since in these cases the
Hamiltonian is found to depend only on the nnn neighbours and nn neighbours, respectively.
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Also, these transitions can be visualized from the limiting values: nnn-neighbour dimers for
γ → −∞, and nn-neighbour dimers for α → −∞. However, in the realistic regime, for
other values of α and γ , we obtain the ground-state phases numerically. We have obtained
the boundary lines dividing the ferromagnetic, nnn-neighbour dimers, nn-neighbour dimers
and the regular antiferromagnetic phases. Figure 4 shows the full phase diagram, with J1

negative. Note that, even for J1 > 0, these dimer ground states can be obtained by equating
the corresponding Hamiltonian expressions, similarly as discussed for J1 < 0.

3.2. Thermodynamic properties

In this section we present the thermodynamic properties of the cubic cluster at various points in
the parameter-space phase diagram. We have computed the magnetization and susceptibility
as a function of the temperature T and an applied magnetic field B [13, 14].

The canonical partition function, Z, at a temperature, T , and for an external magnetic
field, B, can be written as

Z =
∑

k

e−β(Ek−BSz
tot,k ) (8)

where the sum is over all the energy states of the cubic cluster in all Sz
tot sectors. Ek and

Sz
tot,k denote the energy and z-component of the total spin respectively, of the state k. B is the

magnetic field strength in units of J1/gµB, (g is the gyromagnetic ratio and µB is the Bohr
magneton) along the z-direction, and β = 1/kBT , with kB and T being the Boltzmann constant
and temperature respectively. The field-induced magnetization 〈M〉 can be written as

〈M〉 =
∑

k Sz
tot,ke−β(Ek−BSz

tot,k )

Z
. (9)

The magnetic susceptibility, defined as δ〈M〉/δB, is related to the fluctuation in magnetization

χ = β[〈M2〉 − 〈M〉2]

T
(10)

where

〈M2〉 =
∑

k(S
z
tot,k)

2e−β(Ek−BSz
tot,k )

Z
. (11)

We present our calculations of the thermodynamic properties in four different phases,
namely

(a) ferromagnetic ground state at α = 0 and γ = 0;
(b) nnn-neighbour dimer ground state with the lowest excitation (i) ferromagnetic at α = 1

and γ = −1.75, and (ii) triplet at α = 1 and γ = −2.5;
(c) regular antiferromagnetic ground state at α = −1 and γ = −1;
(d) nn-neighbour dimer ground state with lowest excitation (i) ferromagnetic at γ = 1 and

α = −0.7, (ii) quartet at γ = 1 and α = −0.9, and (iii) triplet at γ = 1 and α = −1.25.

We have considered these points since these are the representatives of various ground-state
and low-lying excitation characteristics possible in the full phase diagram shown in figure 4.

In the absence of an external magnetic field, the magnetization of the system is zero at all
temperatures, since the spins are randomly oriented. An applied magnetic field polarizes the
system producing a finite magnetization either at zero or higher temperatures. The dependence
of magnetizations on temperature for a magnetic field strength of B = 0.01/gµB are shown
in figure 5, for four different cases as mentioned above. For the ferromagnetic ground state
(case (a)), the magnetization decreases rapidly from 1/2, tending to zero at higher temperatures.
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Figure 5. Magnetizations per site as a function of temperature, for seven different sets of parameters,
defined in the text.

This is due to the effect of thermal vibrations, which destroy the alignment of the Sz components
at high temperatures. For the S = 0 ground states (cases (b)–(d) in figure 5) the magnetization is
zero at zero temperature, increases to a maximum at a characteristic temperature, but decreases
with a further increase in temperature. The specific behaviour of these magnetization curves
can be analysed with the help of the spin excitations present in the system. In cases (b,i) and
(d,i), the lowest spin excitation at low temperature is to the highest spin state possible for the
system (S = 4). Therefore, initially, the magnetization shows an abrupt increase, signalling
that the spin excitation at this temperature is to the highest spin state. The subsequent drop in the
magnetization is due to the higher-energy low-magnetization spin states (triplets etc) accessed
with the increase in temperature. For other cases ((b,ii), (d,ii), (d,iii) and (c)), as the lowest
spin excitation is to either a triplet, or a quintet state, the initial increase is comparatively
smoother, but nonetheless depends explicitly on the excited state spin multiplets. At high
temperatures in all cases, the magnetization averages out to be zero, but the temperature at
which this paramagnetic behaviour sets in varies for different parameters.

The temperature dependence of χT per site in zero magnetic field is shown in figure 6,
for the same parameter sets mentioned above. In the absence of an external magnetic field,
the zero temperature value of χT is equal to the average of the square of the magnetization
in the ground state. For the ferromagnetic ground state (SG = 4), χT/N , as T → 0, is given
by SG(SG + 1)/3N , which is 0.833 for this system. As the temperature increases, the product,
χT , decreases because at higher temperatures, the states with S < SG become populated.
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Figure 6. Temperature dependence of the product χT per site, for seven different sets of parameters,
as in figure 5.

For cases with singlet ground state, the χT product is zero at zero temperature. However, at
finite but low temperature (Tmin), the states with higher S values are accessed. This value of
Tmin, however, depends on the lowest energy gap, and so is different for different parameters.
The magnitude of the initial increment is directly proportional to the average of the square
of the magnetization of the lowest excited spin state. The dependence of χT on temperature
above Tmin can be explained by the properties of higher-energy spin states which, in cases (b,i)
and (d,i) ((b,ii), (c), (d,ii) and (d,iii)) have lower (higher) magnetizations than the lowest
excited state. However, at very high temperatures, the spins are completely decoupled and the
paramagnetic χT/N product is 1/4, which is the limiting value in each of the cases.

To summarize, we have considered a simple cubic spin-1/2 cluster, which undergoes
various phase transformations subject to the changes in exchange pathways. There are as
many as five different phases with ground state: (i) ferromagnetic; (ii) nnn-neighbour dimers;
(iii) regular antiferromagnetic; (iv) nn-neighbour dimers; and (v) each of the nnn-neighbour
forming triplets. The low-temperature thermodynamic properties such as susceptibility and
magnetization indicate the transition between different spin states, quantifying the role of
various low-lying excitations with the same ground state, at a number of points in the two-
dimensional parameter space phase diagram.
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